В чем разница между двигателем и генератором

Генератор и двигатель — чем они отличаются

Все электрические машины функционируют в соответствии с законом электромагнитной индукции, а также с законом взаимодействия проводника с током и магнитного поля.

Электрические машины по типу питания подразделяются на машины постоянного и переменного тока. Постоянный ток создается за счет источников бесперебойного питания. Для машин постоянного тока характерно свойство обратимости. Это означает, что они способны работать как в двигательном, так и в генераторном режиме. Данное обстоятельство можно объяснить с точки зрения аналогичных явлений в работе обеих машин. Более детально конструктивные особенности двигателя и генератора рассмотрим далее.

Двигатель

Двигатель предназначен для преобразования электрической энергии в механическую. В промышленном производстве двигатели применяются в качестве приводов на станках и прочих механизмах, являющихся частью технологических процессов. Также двигатели используются в бытовых приборах, к примеру, в стиральной машине.

Электродвигатель постоянного тока

При нахождении в магнитном поле проводника в виде замкнутой рамки, силы, которые приложены к рамке, приведут данный проводник к вращению. В таком случае, речь будет идти о простейшем двигателе.

Как было указано ранее, работа двигателя постоянного тока осуществляется от источников бесперебойного питания, к примеру, от аккумуляторной батареи, блока питания. У двигателя имеется обмотка возбуждения. В зависимости от ее подключения, различают двигатели с независимым и самовозбуждением, которое, в свою очередь, может быть последовательным, параллельным и смешанным.

Подключение двигателя переменного тока производится от электрической сети. Исходя из принципа работы, двигатели подразделяются на синхронные и асинхронные.

Главным отличием синхронного двигателя является наличие обмотки на вращающемся роторе, а также имеющийся щеточный механизм, служащий для подведения тока на обмотки. Вращение ротора осуществляется синхронно вращению магнитного поля статора. Отсюда двигатель имеет такое название.

В асинхронном двигателе важным условием является то, что вращение ротора должно быть медленнее вращения магнитного поля. При несоблюдении данного требования наведение электродвижущей силы и возникновение электротока в роторе оказывается невозможным.

Асинхронные двигатели применяются чаще, однако у них имеется один значительный недостаток – без изменения частоты тока невозможно регулирование скорости вращения вала. Данное условие не позволяет достичь вращения с постоянной частотой. Также значительным недостатком является ограничение по максимальной скорости вращения (3000 об./мин.).

Генератор

Проводник, перемещаясь между двумя магнитными полюсами, способствует возникновению электродвижущей силы. Когда проводник замыкают, то при воздействии электродвижущей силы в нем возникает ток. На данном явлении основывается действие электрического генератора.

Генератор переменного тока

Генератор способен вырабатывать электрическую энергию из тепловой или химической энергии. Однако наиболее широкое распространение получили генераторы, преобразующие механическую энергию в электрическую.

Основные составные элементы генератора постоянного тока:

  • Якорь, выступающий в качестве ротора.
  • Статор, на котором располагается катушка возбуждения.
  • Корпус.
  • Магнитные полюса.
  • Коллекторный узел и щетки.

Генераторы постоянного тока используются не так часто. Основные сферы их применения: электрический транспорт, сварочные инверторы, а также ветроустановки.

Генератор постоянного тока

Генератор переменного тока имеет схожую конструкцию с генератором постоянного тока, но отличается строением коллекторного узла и обмотками на роторе.

Схема генератора переменного тока

Так же как и в случае с двигателями, генераторы могут быть синхронными и асинхронными. Разница между данными генераторами заключается в строении ротора. У синхронного генератора катушки индуктивности расположены на роторе, а у асинхронного генератора для расположения обмотки на валу имеются специальные пазы.

Чем отличается генератор от двигателя?

Подводя итог, важно отметить, что функционирование двигателей и генераторов основано на общем принципе электромагнитной индукции. Конструкция данных электрических машин аналогична, однако имеется различие в конфигурации ротора.

Главным же отличием является функциональное назначение генератора и двигателя: двигатель вырабатывает механическую энергию, потребляя электрическую, а генератор наоборот вырабатывает электрическую энергию, потребляя механическую, либо другой вид энергии.

Работа асинхронного двигателя в генераторном режиме

Все электрические машины функционируют в соответствии с законом электромагнитной индукции, а также с законом взаимодействия проводника с током и магнитного поля.

Электрические машины по типу питания подразделяются на машины постоянного и переменного тока. Постоянный ток создается за счет источников бесперебойного питания. Для машин постоянного тока характерно свойство обратимости. Это означает, что они способны работать как в двигательном, так и в генераторном режиме. Данное обстоятельство можно объяснить с точки зрения аналогичных явлений в работе обеих машин. Более детально конструктивные особенности двигателя и генератора рассмотрим далее.

Двигатель

Двигатель предназначен для преобразования электрической энергии в механическую. В промышленном производстве двигатели применяются в качестве приводов на станках и прочих механизмах, являющихся частью технологических процессов. Также двигатели используются в бытовых приборах, к примеру, в стиральной машине.


Электродвигатель постоянного тока

При нахождении в магнитном поле проводника в виде замкнутой рамки, силы, которые приложены к рамке, приведут данный проводник к вращению. В таком случае, речь будет идти о простейшем двигателе.

Как было указано ранее, работа двигателя постоянного тока осуществляется от источников бесперебойного питания, к примеру, от аккумуляторной батареи, блока питания. У двигателя имеется обмотка возбуждения. В зависимости от ее подключения, различают двигатели с независимым и самовозбуждением, которое, в свою очередь, может быть последовательным, параллельным и смешанным.

Подключение двигателя переменного тока производится от электрической сети. Исходя из принципа работы, двигатели подразделяются на синхронные и асинхронные.


Асинхронный двигатель

Главным отличием синхронного двигателя является наличие обмотки на вращающемся роторе, а также имеющийся щеточный механизм, служащий для подведения тока на обмотки. Вращение ротора осуществляется синхронно вращению магнитного поля статора. Отсюда двигатель имеет такое название.

В асинхронном двигателе важным условием является то, что вращение ротора должно быть медленнее вращения магнитного поля. При несоблюдении данного требования наведение электродвижущей силы и возникновение электротока в роторе оказывается невозможным.

Асинхронные двигатели применяются чаще, однако у них имеется один значительный недостаток – без изменения частоты тока невозможно регулирование скорости вращения вала. Данное условие не позволяет достичь вращения с постоянной частотой. Также значительным недостатком является ограничение по максимальной скорости вращения (3000 об./мин.).

В случаях необходимости достижения постоянной скорости вращения вала, возможности ее регулирования, а также достижения скорости вращения, превышающей максимально возможную для асинхронных двигателей, применяют синхронные двигатели.

Схема работы

Асинхронный генератор считается одним из наиболее простых и надёжных в плане эксплуатации. Процесс работы выглядит следующим образом:

  • В якорной обмотке с помощью напряжения, что идёт от аккумулятора, создаётся магнитное поле.
  • Вращение элементов поля можно организовать своими руками или же автоматизировать процесс с помощью использования реле.
  • Скорость магнитного поля позволяет вырабатывать электромагнитную индукцию, что провоцирует возникновение электричества.

Из-за наличия внутри оборудования короткозамкнутого ротора не все схемы имеют возможность обеспечивать обмотку напряжением. Поэтому даже в случае активного вращения вала клемы будут обесточены.

Составляющие элементы

Генератор из асинхронного двигателя своими руками 220 В создать несложно, но предварительно нужно понять, какие детали входят в механизм. Даже простые модели требуют нужных элементов для воссоздания электричества. Стандартный асинхронный двигатель включает в себя:

  • Статор из сетевой обмотки на три фазы. Они размещаются по его рабочей поверхности в виде намотки.
  • Обмотку, напоминающую звезду и состоящую из контактных колец, что имеют выход к ротору.
  • Щётки, которые не совершают по факту никакой работы, но способствуют включению реостата. Такое приспособление влияет на функциональность обмотки и изменяет параметры её сопротивления.
  • Иногда в механизме может быть встроен специальный автоматический короткозамыкатель, который может закоротить обмотку и остановить элемент реостата, даже если деталь пребывает в работе.

В стадии замыкания щёток и контактных колец могут включаться дополнительно элементы для их разводки. Не все генераторы оснащены такими деталями, приспособление можно увидеть у новых моделей.

Секреты и тонкости

Чтобы сделать асинхронный двигатель в режиме генератора нужно не только изучить модель устройства, но и подобрать нужные элементы. Специалисты советуют использовать неполярные батареи конденсаторного типа, поскольку электролитические элементы в данную схему не вписываются.

Читайте также  Почему дизельный двигатель дымит

Трёхфазный тип запускает детали конденсаторов с помощью звезды. Это даёт возможность запустить генеративный процесс с небольшими оборотами ротора, но такой способ негативно сказывается на выходе напряжения.

Можно создать генератор, используя и однофазный механизм, но это только в случае, если имеются короткозамкнутые роторы. Нельзя использовать для переделки под генератор коллекторный тип двигателей, поскольку их мощность слишком высока для такого механизма. В домашних условиях узнать о ёмкости батареи конденсаторного типа нельзя. Это стоит учитывать в процессе переделки.

Узнать, подходит ли батарея для генератора можно исходя из её веса. Тяжесть детали должна быть равной электродвигателю.

Генератор

Проводник, перемещаясь между двумя магнитными полюсами, способствует возникновению электродвижущей силы. Когда проводник замыкают, то при воздействии электродвижущей силы в нем возникает ток. На данном явлении основывается действие электрического генератора.


Генератор переменного тока

Генератор способен вырабатывать электрическую энергию из тепловой или химической энергии. Однако наиболее широкое распространение получили генераторы, преобразующие механическую энергию в электрическую.

Основные составные элементы генератора постоянного тока:

  • Якорь, выступающий в качестве ротора.
  • Статор, на котором располагается катушка возбуждения.
  • Корпус.
  • Магнитные полюса.
  • Коллекторный узел и щетки.

Генераторы постоянного тока используются не так часто. Основные сферы их применения: электрический транспорт, сварочные инверторы, а также ветроустановки.


Генератор постоянного тока

Генератор переменного тока имеет схожую конструкцию с генератором постоянного тока, но отличается строением коллекторного узла и обмотками на роторе.


Схема генератора переменного тока

Так же как и в случае с двигателями, генераторы могут быть синхронными и асинхронными. Разница между данными генераторами заключается в строении ротора. У синхронного генератора катушки индуктивности расположены на роторе, а у асинхронного генератора для расположения обмотки на валу имеются специальные пазы.

Синхронные генераторы применяют, когда необходима выдача тока с высокой пусковой мощностью на короткий промежуток времени, с превышением номинальной. Применение асинхронных генераторов больше предусмотрено в быту, для энергетического снабжения бытовых приборов, а также для освещения, так как электрическая энергия, вырабатывается практически без искажений.

Первоначально для питания двигателей использовался электромашинный управляемый преобразователь (система «генератор-двигатель») (рис. 4.13) [1; 2; 14].

Рис. 4.13. Схема системы «генератор-двигатель».

В пунктир заключён электромашинный преобразователь, включающий в себя гонный асинхронный двигатель и генератор постоянного тока. Такой преобразователь позволяет в широком диапазоне изменять напряжение на двигателе, изменяя ток возбуждения генератора (ОВГ). Очевидно, что в данном случае напряжение на выходе преобразователя определяется ЭДС генератора. Данная система позволяет обеспечить все возможные режимы работы двигателя. Механические характеристики двигателя (рис. 4.14) располагаются во всех 4 квадрантах. Основной режим работы двигателя в такой системе – это работа с постоянным магнитным потоком, то есть . Мы можем записать уравнения электромеханической и механической характеристик двигателя, полагая, что :

В чем разница между двигателем и генератором

Рис. 10.1. Принципиальная схема генератора

Рис. 10.2. Принципиальная схема электродвигателя.

Если в магнитное поле поместить проводник с током в виде замкнутой рамки (рис. 10.2), то под действием сил, приложенных к сторонам рамки, она придет во вращение. Таким образом, проводник с током в магнитном поле можно рассматривать как элементарный электрический двигатель.

У большинства электрических машин магнитное поле создается не постоянным .магнитом, а электрическим током, протекающим по специальным катушкам машины. Эти катушки называют обмотками возбуждения.

Электрическая схема электрических машин состоит из неподвижных и подвижных обмоток.

Электрические машины являются машинами вращательного действия. Основными частями их являются: неподвижный статор и вращающийся ротор, разделенные зазором (рис. 10.3).

Статор и ротор имеют стальные сердечники. Сердечник набран из изолированных друг от друга листов электротехнической стали. На внутренней стороне сердечника статора и на наружной стороне сердечника ротора имеются параллельные продольные пазы, в которые укладываются обмотки. Ротор закрепляется на валу, который вращается в подшипниках. Подшипники встроены в торцовые крышки, которые болтами крепятся к станине. На валу ротора устанавливается также вентилятор, служащий для охлаждения обмоток и сердечников.

Станина имеет лапы для крепления машины к фундаменту или специальный фланец с отверстиями под крепления.

Рис. 10.3. Конструктивная схема электрических машин.

Асинхронные двигатели. Асинхронные двигатели состоят из двух основных частей: статора и ротора. На статоре располагается трехфазная обмотка (у трехфазных двигателей). Концы обмоток присоединяют к питающей сети. Обмотка имеет шесть выводных концов с металлическими бирками, расположенных в коробке и имеющих обозначение начал трехфазной обмотки С1, С2, СЗ и концов С4, С5, Сб. Ротор также имеет обмотку. В зависимости от типа обмотки асинхронные электродвигатели бывают с короткозамкнутым и с фазным ротором.

В короткозамкнутом роторе обмотка представляет собой цилиндрическую клетку, образованную отдельными стержнями, уложенными в пазы ротора и соединенными с торцовых сторон кольцами («беличье колесо»).

Обмотка фазного ротора выполнена изолированным проводом и уложена в пазы ротора. Как и обмотка статора, она состоит из трех (или группы) катушек. Начала катушек соединены в звезду, а концы подведены к контактным кольцам на валу ротора. По кольцам скользят щетки, закрепленные в неподвижных щеткодержателях. Щетки соединяют обмотку ротора с реостатом, находящимся вне двигателя и служащим для уменьшения пусковых токов или регулирования скорости вращения.

Электродвигатели с короткозамкнутым ротором применяют в электроприводе, не требующем регулирования скорости. Основным недостатком их является большая сила тока в момент пуска двигателя, превышающая в 5…7 раз ток при установившихся оборотах.

Двигатели с фазным ротором позволяют регулировать скорость вращения. Кроме того, включение в цепь ротора пускорегулирующе- го реостата позволяет уменьшить силу пускового тока и увеличить пусковой момент.

Каждый двигатель снабжается паспортом — металлической табличкой, закрепляемой на корпусе двигателя, на которой указывается завод-изготовитель, марка двигателя и основная характера стика двигателя.

Если в паспорте указано напряжение 220/380 В, то электродвигатель можно включать в сеть напряжением 220 и 380 В.

При напряжении 220 В обмотки статора соединяют треугольником (рис. 10.4, а) —начало первой обмотки С1 соединяют с концом третьей С6, начало второй С2 с концом первой С4, а конец второй С5 с началом третьей СЗ. Соединенные концы подводят к трем фазам сети.

Рис. 10.4. Схемы соединения обмоток статора трехфазного двигателя.

При напряжении 380 В обмотки соединяют звездой (рис. 10.4, б, в) — все начала или все концы обмоток соединяют вместе, а свободные концы включают в трехфазную сеть.

Двигатели постоянного тока применяют в тех случаях, когда требуется плавное и глубокое регулирование скорости вращения.

Двигатель постоянного тока (рис. 10.5) состоит из неподвижной станины, вращающегося якоря с коллектором и щеток со щеткодержателями. Внутри станины укрепляют главные полюсы с обмотками возбуждения, которые создают магнитный поток. Стержни обмотки якоря соединены по определенной схеме с пластинами коллектора. Щетки, скользящие по пластинам коллектора, соединяют обмотку якоря с внешней сетью. С внешней сетью соединяется также обмотка возбуждения;

Читайте также  Чей двигатель стоит на Дэу Нексия

Для уменьшения искрения на коллекторе на станине установлены дополнительные полюса.

Регулирование частоты вращения ротора достигается изменением силы тока обмотки возбуждения. Обмотки возбуждения двигателей постоянного тока питаются постоянным током. Различают двигатели с независимым возбуждением и с самовозбуждением. В двигателях с независимым возбуждением обмотка возбуждения питается от постороннего источника. В машинах же с самовозбуждением она питается от якорной обмотки этого же двигателя. Возбуждение при этом может осуществляться при параллельном, последовательном или смешанном соединениях, когда одна обмотка возбуждения соединена с якорной параллельно, а другая — последовательно. Соответственно этому электродвигатели называются шунтовые, сериесные и ком- паундные.

Все электрические машины характеризуются обратимостью, т. е. возможностью работать как в качестве электродвигателя, так и в качестве генератора.

Рис. 10.5. Электродвигатель постоянного тока:
1 — коллектор; 2 — щеткодержатель; 3 — якорь; 4 — главный полюс; 5 — обмотка возбуждения; 6 — станина; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря.

Генератор устроен принципиально так же, как и электродвигатель. В отличие от него в генераторе принудительно вращается ротор (якорь). С помощью генератора механическая энергия вращающегося якоря превращается в электрическую. Подобно электродвигателям, генераторы бывают переменного и постоянного тока. Генераторы постоянного тока бывают шунтовые, сериесные и компаундные.

Как сделать правильно электрогенератор из электродвигателя

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

  1. Сфера применения данного оборудования
  2. Генератор и существующие его виды
  3. Делаем оборудование без узла привода
  4. Работы поэтапно
  5. Советы специалиста

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Последний из названных вариантов рекомендуется приобретать в случае, когда пользователь планирует подключать к нему трехфазные потребители. Их преимущество заключается в возможности питать также и однофазную технику.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

  • В качестве двигателя для ветровых электрогенераторов;
  • В виде небольших ГЭС.

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Читайте также  Как должен двигаться велосипедист по проезжей части

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости. Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.

Можно ли использовать электродвигатель как генератор

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: